

Problem of the Week

Answer Any Two of the following:

1. Let f be an infinitely differentiable function from \mathbb{R} to \mathbb{R}. Suppose that, for some positive integer n,

$$
f(1)=f(0)=f^{\prime}(0)=f^{\prime /}(0)=\cdots=f^{n}(0)=0 .
$$

Prove that $f^{n+1}(x)=0$ for some x in $(0,1)$.
2. Assume that f is twice continuously differentiable function on $(0, \infty)$, $\lim _{x \rightarrow \infty} x f(x)=0, \lim _{x \rightarrow \infty} x f^{/ /}(x)=0$. Prove that $\lim _{x \rightarrow \infty} x f^{\prime}(x)=0$.
3. Let f be a continuous function on $[0,1]$. Evaluate $\lim _{n \rightarrow \infty} \int_{0}^{1} x^{n} f(x) d x$.

Brief Solution of the Problem Posted on 03.03.22

1. By Rolle's Theorem $\exists x_{1} \in(0,1)$ such that $f^{\prime}\left(x_{1}\right)=0$. Hence according to the given condition and by repeated application of Rolle's Theorem will tell us that $\exists x \in\left(0, x_{n}\right) \subset(0,1)$ such that $f^{n+1}(x)=0$.
2. By Taylor's Theorem on $[x, x+1]$ we get

$$
f(x+1)=f(x)+f^{\prime}(x)+\frac{1}{2} f^{\prime /}(\lambda) \text { where } \lambda \in(x, x+1)
$$

Now, consider the expression
$x f^{\prime}(x)=\frac{x}{x+1}(x+1) f(x+1)-x f(x)-\frac{1}{2} \frac{x}{\lambda} \lambda f^{\prime /}(\lambda)$
By taking the limit $x \rightarrow \infty$ both side we get the result.
3. Let $\left.\varepsilon>0, L=\max _{x \in[0,1]}(|f(x)|+1) \& 0<\delta<\operatorname{minim}_{2 L}^{\varepsilon}, 1\right\}$

Observe that $\left|\int_{1-\delta}^{1} x^{n} f(x) d x\right| \leq \int_{1-\delta}^{1}|x|^{n}|f(x)| d x \leq L \delta \leq \frac{\varepsilon}{2}$
Also $\left|\int_{0}^{1-\delta} x^{n} f(x) d x\right| \leq \int_{0}^{1-\delta}(1-\delta)^{n}|f(x)| d x \leq L \delta^{n+1}$
So, $\lim _{n \rightarrow \infty} \int_{0}^{1} x^{n} f(x) d x=0$.

